找出临界点之间的最小和最大距离Java
文章发布较早,内容可能过时,阅读注意甄别。
# 题目
链表中的 临界点 定义为一个 局部极大值点 或 局部极小值点 。
如果当前节点的值 严格大于 前一个节点和后一个节点,那么这个节点就是一个 局部极大值点 。
如果当前节点的值 严格小于 前一个节点和后一个节点,那么这个节点就是一个 局部极小值点 。
注意:节点只有在同时存在前一个节点和后一个节点的情况下,才能成为一个 局部极大值点 / 极小值点 。
给你一个链表 head ,返回一个长度为 2 的数组 [minDistance, maxDistance] ,
其中 minDistance 是任意两个不同临界点之间的最小距离,maxDistance 是任意两个不同临界点之间的最大距离。如果临界点少于两个,则返回 [-1,-1] 。
示例 1:
输入:head = [3,1]
输出:[-1,-1]
解释:链表 [3,1] 中不存在临界点。
示例 2:
输入:head = [5,3,1,2,5,1,2]
输出:[1,3]
解释:存在三个临界点:
- [5,3,1,2,5,1,2]:第三个节点是一个局部极小值点,因为 1 比 3 和 2 小。
- [5,3,1,2,5,1,2]:第五个节点是一个局部极大值点,因为 5 比 2 和 1 大。
- [5,3,1,2,5,1,2]:第六个节点是一个局部极小值点,因为 1 比 5 和 2 小。
第五个节点和第六个节点之间距离最小。minDistance = 6 - 5 = 1 。
第三个节点和第六个节点之间距离最大。maxDistance = 6 - 3 = 3 。
示例 3:
输入:head = [1,3,2,2,3,2,2,2,7]
输出:[3,3]
解释:存在两个临界点:
- [1,3,2,2,3,2,2,2,7]:第二个节点是一个局部极大值点,因为 3 比 1 和 2 大。
- [1,3,2,2,3,2,2,2,7]:第五个节点是一个局部极大值点,因为 3 比 2 和 2 大。
最小和最大距离都存在于第二个节点和第五个节点之间。
因此,minDistance 和 maxDistance 是 5 - 2 = 3 。
注意,最后一个节点不算一个局部极大值点,因为它之后就没有节点了。
示例 4:
输入:head = [2,3,3,2]
输出:[-1,-1]
解释:链表 [2,3,3,2] 中不存在临界点。
提示:
- 链表中节点的数量在范围 [2, 105] 内
- 1 <= Node.val <= 105
# 思路
TreeSet
# 解法
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
class Solution {
public int[] nodesBetweenCriticalPoints(ListNode head) {
TreeSet<Integer> treeSet = new TreeSet<>();
int index = 0;
Integer prevVal = null;
int minDistance = Integer.MAX_VALUE;
while (head != null) {
if (prevVal != null && head.next != null) {
if ((prevVal > head.val && head.val < head.next.val) || (prevVal < head.val && head.val > head.next.val)) {
if (treeSet.size() > 0) {
minDistance = Math.min(minDistance, index - treeSet.last());
}
treeSet.add(index);
}
}
prevVal = head.val;
head = head.next;
index++;
}
if (treeSet.size() < 2) {
return new int[]{-1, -1};
}
return new int[]{minDistance, treeSet.last() - treeSet.first()};
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# 总结
- 分析出几种情况,然后分别对各个情况实现