二叉树最大宽度Java
文章发布较早,内容可能过时,阅读注意甄别。
# 题目
给定一个二叉树,编写一个函数来获取这个树的最大宽度。树的宽度是所有层中的最大宽度。这个二叉树与满二叉树(full binary tree)结构相同,但一些节点为空。
每一层的宽度被定义为两个端点(该层最左和最右的非空节点,两端点间的null节点也计入长度)之间的长度。
示例 1:
输入:
1
/ \
3 2
/ \ \
5 3 9
输出: 4
解释: 最大值出现在树的第 3 层,宽度为 4 (5,3,null,9)。
示例 2:
输入:
1
/
3
/ \
5 3
输出: 2
解释: 最大值出现在树的第 3 层,宽度为 2 (5,3)。
示例 3:
输入:
1
/ \
3 2
/
5
输出: 2
解释: 最大值出现在树的第 2 层,宽度为 2 (3,2)。
示例 4:
输入:
1
/ \
3 2
/ \
5 9
/ \
6 7
输出: 8
解释: 最大值出现在树的第 4 层,宽度为 8 (6,null,null,null,null,null,null,7)。
注意: 答案在32位有符号整数的表示范围内。
# 思路
假设满二叉树表示成数组序列, 根节点所在的位置为1, 则任意位于i节点的左右子节点的index为2i, 2i+1用一个List保存每层的左端点,
易知二叉树有多少层List的元素就有多少个. 那么可以在dfs的过程中记录每个节点的index及其所在的层level,
如果level > List.size()说明当前节点就是新的一层的最左节点, 将其加入List中, 否则判断当前节点的index减去List中对应层的最左节点的index的宽度是否大于最大宽度并更新
# 解法
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int maxX = 0;
public int widthOfBinaryTree(TreeNode root) {
/**假设满二叉树表示成数组序列, 根节点所在的位置为1, 则任意位于i节点的左右子节点的index为2*i, 2*i+1用一个List保存每层的左端点, 易知二叉树有多少层List的元素就有多少个. 那么可以在dfs的过程中记录每个节点的index及其所在的层level, 如果level > List.size()说明当前节点就是新的一层的最左节点, 将其加入List中, 否则判断当前节点的index减去List中对应层的最左节点的index的宽度是否大于最大宽度并更新**/
dfs(root,1,1,new ArrayList<>());
return maxX;
}
private void dfs(TreeNode r,int level,int index,List<Integer> left){
if(r == null){
return;
}
if(level>left.size()){
left.add(index);
}
maxX = Math.max(maxX,index-left.get(level-1)+1);
dfs(r.left,level+1,index*2,left);
dfs(r.right,level+1,index*2+1,left);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42