LRU 缓存Java
文章发布较早,内容可能过时,阅读注意甄别。
# 题目
请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCache 类:
- LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
- int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
- void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。
- 函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。
示例:
输入
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]
解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4
提示:
- 1 <= capacity <= 3000
- 0 <= key <= 10000
- 0 <= value <= 105
- 最多调用 2 * 105 次 get 和 put
# 思路
重写map的removeEldestEntry方法
this.map = new LinkedHashMap(capacity,0.75f,true){
@Override
public boolean removeEldestEntry(Map.Entry entry){
return map.size() > capacity;
}
};
# 解法
class LRUCache {
Map<Integer,Integer> map;
public LRUCache(int capacity) {
this.map = new LinkedHashMap(capacity,0.75f,true){
@Override
public boolean removeEldestEntry(Map.Entry entry){
return map.size() > capacity;
}
};
}
public int get(int key) {
return map.getOrDefault(key,-1);
}
public void put(int key, int value) {
map.put(key,value);
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class LRUCache {
int capacity;
Map<Integer,Integer> map;
public LRUCache(int capacity) {
map = new LinkedHashMap<>(capacity);
this.capacity = capacity;
}
public int get(int key) {
if(!map.containsKey(key)){
return -1;
}
int value = map.get(key);
map.remove(key);//删除老key,再存入新key,这样新key就排在最新位置了
map.put(key,value);
return value;
}
public void put(int key, int value) {
if(map.containsKey(key)){
map.remove(key);
map.put(key,value);
}else{
if(map.size()==capacity){
map.remove(map.keySet().iterator().next());
}
map.put(key,value);
}
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# 总结
- 分析出几种情况,然后分别对各个情况实现