两球之间的磁力Java
文章发布较早,内容可能过时,阅读注意甄别。
# 题目
在代号为 C-137 的地球上,Rick 发现如果他将两个球放在他新发明的篮子里,它们之间会形成特殊形式的磁力。Rick 有 n 个空的篮子,第 i 个篮子的位置在 position[i] ,Morty 想把 m 个球放到这些篮子里,使得任意两球间 最小磁力 最大。
已知两个球如果分别位于 x 和 y ,那么它们之间的磁力为 |x - y| 。
给你一个整数数组 position 和一个整数 m ,请你返回最大化的最小磁力。
示例 1:
输入:position = [1,2,3,4,7], m = 3
输出:3
解释:将 3 个球分别放入位于 1,4 和 7 的三个篮子,两球间的磁力分别为 [3, 3, 6]。最小磁力为 3 。我们没办法让最小磁力大于 3 。
示例 2:
输入:position = [5,4,3,2,1,1000000000], m = 2
输出:999999999
解释:我们使用位于 1 和 1000000000 的篮子时最小磁力最大。
提示:
- n == position.length
- 2 <= n <= 10^5
- 1 <= position[i] <= 10^9
- 所有 position 中的整数 互不相同 。
- 2 <= m <= position.length
# 思路
二分
# 解法
class Solution {
public int maxDistance(int[] position, int m) {
Arrays.sort(position);
int n = position.length;
int l = 1, r = position[n-1] - position[0], mid = r/2;
while (l < r) {
if (f(position, mid, m-1)) {
l = mid;
} else {
r = mid - 1;
}
mid = l + (r - l + 1)/2;
}
return l;
}
private boolean f (int[] positions, int d, int m) {
if ((positions[positions.length-1] - positions[0])/m < d) return false;
int idx = 0;
for (int i = 1; i < positions.length && m > 0; i++) {
if (positions[i] - positions[idx] >= d){
m--;
idx = i;
}
}
return m <= 0;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# 总结
- 分析出几种情况,然后分别对各个情况实现


