游戏玩法分析 IVJava
文章发布较早,内容可能过时,阅读注意甄别。
# 题目
Table: Activity
+--------------+---------+
| Column Name | Type |
+--------------+---------+
| player_id | int |
| device_id | int |
| event_date | date |
| games_played | int |
+--------------+---------+
(player_id,event_date)是此表的主键(具有唯一值的列的组合)。
这张表显示了某些游戏的玩家的活动情况。
每一行是一个玩家的记录,他在某一天使用某个设备注销之前登录并玩了很多游戏(可能是 0)。
编写解决方案,报告在首次登录的第二天再次登录的玩家的 比率,四舍五入到小数点后两位。换句话说,你需要计算从首次登录日期开始至少连续两天登录的玩家的数量,然后除以玩家总数。
结果格式如下所示:
示例 1:
输入:
Activity table:
+-----------+-----------+------------+--------------+
| player_id | device_id | event_date | games_played |
+-----------+-----------+------------+--------------+
| 1 | 2 | 2016-03-01 | 5 |
| 1 | 2 | 2016-03-02 | 6 |
| 2 | 3 | 2017-06-25 | 1 |
| 3 | 1 | 2016-03-02 | 0 |
| 3 | 4 | 2018-07-03 | 5 |
+-----------+-----------+------------+--------------+
输出:
+-----------+
| fraction |
+-----------+
| 0.33 |
+-----------+
解释:
只有 ID 为 1 的玩家在第一天登录后才重新登录,所以答案是 1/3 = 0.33
# 思路
round、count、distinct、datediff
# 解法
# Write your MySQL query statement below
select
round(count(distinct t2.player_id)/count(distinct t1.player_id), 2) fraction
from
(select player_id, min(event_date) first_date
from activity
group by player_id) t1
left join activity t2
on t1.player_id=t2.player_id
and datediff(t2.event_date,t1.first_date)=1
1
2
3
4
5
6
7
8
9
10
11
12
13
2
3
4
5
6
7
8
9
10
11
12
13
# 总结
- 分析出几种情况,然后分别对各个情况实现